
Python Programming Exercises 8

Notes: in this set of exercises we will learn how to install external libraries and start to use the BioPython library.

1. While external libraries can be installed manually, the preferred method to install Python modules is using Pip. Depending on
your distribution/operating system, pip may be called pip3 for Python 3.

If you do not know the exact name of what you want to install you can use the search subcommand to search by keyword:

dredd:~ ajm$ pip3 search biopython

Once you know the name of the library that you want, you can use the install command to install both it and all dependencies
(Windows users should not use “sudo”, but instead be logged in as an administrator):

dredd:~ ajm$ sudo pip3 install biopython

If you do not have administrator rights on your computer, then libraries can be installed just for your own use using the --user
flag with the install subcommand:

dredd:~ ajm$ pip3 install --user biopython

1



2. If you have not already installed BioPython, do so now. On Linux/MacOS this can be accomplished with pip (see install
command above). Under Windows we recommend that you use the BioPython Windows installation program (see http:
//wasabiapp.org/pythonsetup/pythonsetup_windows/).

Test your installation by typing the following into the Python interpreter:

>>> import Bio
>>> Bio.__version__
1.65

If you have any problems, ask the demonstrators.

3. BioPython Seq data types take two arguments to create: a sequence and an alphabet:

from Bio.Seq import Seq
from Bio.Alphabet import generic_dna

dna = Seq("AAATTTGGGCCC", generic_dna)

print(dna)

The Seq type shares many of the same methods as the string type (e.g. lower, count, find, split, strip). Seq
variables are immutable, so you cannot do dna[0] = “A”, but you can use them as keys to dictionaries.

2



4. The Seq type has numerous methods to manipulate sequence data (these examples continue from the previous question and
assume you have a Seq variable called dna). Each of these methods return a new Seq object (due to immutability).

Complement (dna→ dna, rna→ rna):

print(dna.complement())

Reverse complement (dna→ dna, rna→ rna):

print(dna.reverse_complement())

Transcribe (dna→ rna):

rna = dna.transcribe()
print(rna)

Back transcribe (rna→ dna):

dna2 = rna.back_transcribe()

if dna == dna2 :
print("got back the original sequence:", dna)

Translate (dna or rna→ protein):

prot_from_dna = dna.translate()
prot_from_rna = rna.translate()

if prot_from_dna == prot_from_rna :
print("protein translated from dna and rna is the same:", prot_from_dna)

While you can try to perform any of these operation on a variable of type Seq, it will result in a ValueError if the operation does
not make sense, e.g. complementing a protein.

3



5. The last set of exercises contained details about how to use the urllib.requests module from the Python stdlib to access
the Ensembl REST API. Here it is again, (this is actually a lie, previously the content-type was set to text/x-fasta, but here we just
want the sequence data):

from urllib.request import urlopen

url = "http://rest.ensembl.org/sequence/id/ENST00000380152?content-type=text/plain;type=protein"

f = urlopen(url)

for line in f :
print(line.decode(’utf-8’), end="")

f.close()

Use this code to write a function that will accept an Ensembl transcript identifier (in the example ENST00000380152, a splicing
isoform of the BRCA2 gene) and return a Seq object containing the protein data (you will need to use generic_protein from
the Bio.Alphabet module instead of generic_dna).

6. We rarely deal with just bare sequences, but need to associate metadata, such as identifiers, with sequence data. In BioPython we
use the SeqRecord data type from the Bio.SeqRecord module for this purpose:

from Bio.Seq import Seq
from Bio.Alphabet import generic_protein
from Bio.SeqRecord import SeqRecord

record = SeqRecord(
Seq("MLLSPSLLLLLLLGAPRGCAEGVAAALTPERL", generic_protein),
id=’ENSP00000283243’, description=’PLA2R1_fragment’)

Rewrite your function from the previous question to return a SeqRecord object instead and set the id value to the Ensembl
transcript identifier.

4



7. The two main fields you will care about in the SeqRecord type are id (a string identifier) and seq a Seq object. We can print a
SeqRecord out in FASTA format as follows:

print(">", record.id, sep="")
print(record.seq)

Fortunately we don’t need to be this ourselves, because SeqRecords can be converted to string representations for many different
sequence data file formats using the format(· · ·) method:

print(record.format(’fasta’))

Use this and your answer from the previous question to write a script that accepts an arbitrary number of Ensembl transcript
identifiers as command line arguments (i.e. using sys.argv) and prints them out in FASTA format.

8. The Bio.SeqIO module contains a function called write(records, file, format) that is used to write SeqRecords to a file. It
accepts three arguments: records (a single SeqRecord or a list of SeqRecords), file (a string containing the file name or a file
object, i.e. created by open(“filename”, “w”)) and format (a string stating the output file format, e.g. “fasta”):

from Bio.Seq import Seq
from Bio.Alphabet import generic_protein
from Bio.SeqRecord import SeqRecord
from Bio import SeqIO

record = SeqRecord(
Seq("MLLSPSLLLLLLLGAPRGCAEGVAAALTPERL", generic_protein),
id=’ENSP00000283243’,
description=’PLA2R1_fragment’)

SeqIO.write(record, "output.fasta", "fasta")

Using this code, take your answer from the previous question and instead of printing to the console, write to a file.

5



9. The Bio.SeqIO module contains a function called parse(file, format) to read files containing sequences that takes two
arguments: file (a string containing the file name or a file object created by open(“filename”, “r”)) and format (a
string stating the input file format, e.g. “fasta”):

from Bio import SeqIO

for record in SeqIO.parse("input.fasta", "fasta") :
print(record.id, len(record.seq))

Write a script that can read a FASTA file of coding sequences (CDS) and convert it to protein sequences. These protein sequences
should be written to a new FASTA file. The names of the input and output FASTA files should be provided as command line
arguments. There is an example input file on the course webpage (http://wasabiapp.org/python_course/zebra_
fish_short_cds.fasta).

10. What happens if you give your script from the previous question a file that does not contain coding sequences? Fix your script
so it fails gracefully with an appropriate error message. (For example, cdna sequences http://wasabiapp.org/python_
course/zebra_fish_short_cdna.fasta)

6


