Python Programming Exercises 4

Notes: In the previous set of exercises we learnt how to use lists and for loops in our programs. In these exercises we will use another
fundamental compound data type: the dictionary as well as another way to iterate, the while loop.

1.

Dictionaries are declared as a list of comma separated key/value pairs between curly braces. Key and value are separated by a
colon. An empty dictionary is created with just a pair of curly braces. You can use 1en (---) to get the number of key/value pairs
in a dictionary:

>>> len ({})
>>> len({ "keyl" : "valuel", "key2" : "value2" })

Keys are associated with values in the dictionary by indexing the dictionary with a key and assigning a value:

>>> d = {}

>>> d["keyl"] = "valuel"
>>> d["key2"] = "value2"
>>> d

We retrieve the value associated with a specific key by indexing the dictionary with the same key:

>>> d ["keyl"]
>>> d [nkeyz u]

4. Dictionary keys must be immutable data types. For example, lists do not work, but strings, ints and floats do:

>>> d = {}

>>> d["key"] =1

>>> d[17] = 0.125
>>> d[0.0] = "value"
>>> d

5. The inclusion operator tests whether keys exist or not:

>>> d = { "keyl" : "valuel", "key2" : "value2" }
>>> "keyl" in d
>>> "key3" in d

6. Key/value pairs can be removed from a dictionary by using the del keyword:

>>> d = { "keyl" : "valuel", "key2" : "value2" }
>>> del d["keyl"]
>>> d

Write a function called remove _keys (mydict, keylist) that accepts two parameters: a dictionary called mydict and a list
called keylist. remove_keys (mydict, keylist) should remove all the keys contained in keylist from mydict and return the
dictionary:

d = { "keyl" : "valuel", "key2" : "value2", "key3" : "value3", "key4" : "valued" }
keys — ["keyl", "key3", "key5"]
if remove_keys(d, keys) == { "key2" : "value2", "key4" : "valued" }

print ("correct!")

7. When we iterate through a dictionary using a for loop, we actually iterate over the keys:

d = { "keyl":1, "key2":2, "key3":1, "key4":3, "key5":1, "key6":4, "key7":2 }

for k in d
print ("key=", k, " value=", d[k], sep="")

Modify the code above to print just the keys associated to values that are greater than 1.

8. Write a function called accept_login (users,username, password) with three parameters: users a dictionary of username
keys and password values, username a string for a login name and password a string for a password. The function should return
True if the user exists and the password is correct and False otherwise. Here is the calling code, test your code with both good
and bad passwords as well as non-existent login names:

users = {
"userl" : "passwordl",
"user2" : "password2",
"user3" : "password3"

if accept_login (users, "wronguser", "wrongpassword")
print ("login successful!")

else
print ("login failed...")

9. A while loop keeps iterating as long as a condition evaluates to True:

count = 0

while count < 5
print ("count =", count)
count += 1

Use a while loop to print a triangle of astericks, like this:
*
* Kk K
* Kk k k%
* Kk Kk ok kK%

*kkk Kk Kk kKKK

10. Write a function that prints a triangle of astericks like the one in the previous question. The function should accept a single
parameter, hetght, that defines how tall the triangle is (in the previous example height = 5). Use a while loop and ensure your
function works by trying different heights.

11. In the previous set of exercises we rewrote the sum () function using a for loop (question 17). Reimplement it using a while loop
instead.

12. When the condition for the while loop requires a lot of code, it is sometimes more readable to loop forever and explicitly use the
break keyword. Fix the following code to do this:

13.

14.

15.

attempts = 0

while True
response = input ("Do you want to quit? (y/n): ")
attempts += 1

print ("Exiting after", attempts, "attempts")

Write a function called find_value (mydict,val) that accepts a dictionary called mydict and a variable of any type called
val. The function should return a list of keys that map to the value val in mydict.

Write a function to invert a dictionary. It should accept a dictionary as a parameter and return a dictionary where the keys are
values from the input dictionary and the values are lists of keys from the input dictionary. For example, this input:

{ "keyl" : "valuel", "key2" : "value2", "key3" : "valuel" }

should return this dictionary:

{ "valuel" : ["keyl", "key3"], "value2" : ["key2"] }

Write a function called word_frequencies (mylist) that accepts a list of strings called mylist and returns a dictionary where
the keys are the words from mylist and the values are the number of times that word appears in mylist:

word_list = list ("aaaaabbbbcccdde™)
word_freq { 'a" : 5, "o’ : 4, 'c" : 3, 'd" : 2, 'e" : 1 }

if word_frequencies (word_list) == word freq
print ("correct")

else
print ("wrong")

16. In bioinformatics a k-mer is a substring of k£ characters from a string that is longer than k (see https://en.wikipedia.
org/wiki/K-mer for details). Write a function with two parameters: a string containing DNA and the value of k. Return a
dictionary of k-mer counts.

