
Accurate extension of multiple sequence alignments

using a phylogeny-aware graph algorithm:

Supplementary material
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1 Graph representation of sequences

The conversion of a regular sequence to a graph is trivial and only requires connecting each character, repre-

sented by a vertex, with edges to its preceding and succeeding characters, and adding start and end vertices

as the unique end points of the graph (Supplementary Figure 1a). Partial-order graphs provide more than a

complex representation of a sequence of characters, however, and allow e.g. for modelling of evolutionary units

of more than one character, non-linear dependencies within a sequence and description of uncertainties in the

input data (Supplementary Figures 1b–d and 2).

The rise of new sequencing methods has changed the balance between throughput and accuracy and the

large amounts of sequence data nowadays come with different characteristics of sequencing errors depending

on the sequencing platform used. Incorrect base calls affect all sequencing platforms and widely-used data

analysis methods take into account the associated quality scores to improve their results [e.g. 13, 12]. PAGAN

supports the input of FASTQ-formatted data and can trim low-quality read ends and mask individual low-

quality bases as well as couple paired-end reads into one input graph before their alignment. Some sequencing

technologies such as the Roche 454 [17], Pacific Biosciences SMRT [6], Ion Torrent (http://www.iontorrent.com)

and Oxford Nanopore (http://nanoporetech.com) are also prone to insertion and deletion errors [8]. PAGAN

sequence graphs are exceptionally well suited for describing such uncertainty in character presence at certain

positions (Supplementary Figure 1c–d).

2 Alignment of sequence graphs

Progressive alignment algorithms attempt to backtrack the tree-like hierarchical structure of relatedness among

a set of homologous sequences [16]. Each alignment clusters two sister nodes, representing either single sequences

or previous alignments, and defines a new node to represent this pairwise solution, i.e. the inferred ancestor of

two descendants. We extend the dynamic-programming algorithm used for the pairwise alignment of sequences

[19] to align partial-order graphs and we then apply this in a progressive manner to align multiple sequences.

The placement of new sequences into an existing reference alignment is not significantly different from the de

novo alignment of sequences: we even use a standard progressive algorithm to account for the relatedness of

the sequences when placing multiple sequences to one target node. The basic concepts for this are illustrated

in Supplementary Figure 3 and the following paragraphs.

In progressive alignment, the handling of deletions is straightforward but insertions require a new gap to

be created at each subsequent stage of the alignment process [14]. The challenge is that insertions cannot be

distinguished from deletions at the time of aligning two sequences–both appear simply as a length difference

between the two sequences–but failing to account for their different properties is likely to cause alignment error

[15]. For example, consider two data sets of three sequences, shown in Supplementary Figure 3a and 3b as three

graphs associated by a known phylogeny. The length difference between graphs A and B indicates that either

an insertion or a deletion has happened (we assume that only one event has taken place) but their pairwise

alignment, shown in Supplementary Figure 3c, cannot distinguish the two scenarios.

A PAGAN graph can describe this uncertainty in the type of mutation event with edges that connect

vertices, representing characters in a sequence, to multiple preceding vertices; each edge is a hypothesis of the

true structure of the ancestral sequence. In Supplementary Figure 3c, vertex 5 of the parent graph X has two

incoming edges, from vertices 2 and 4, to indicate that the presence of vertices 3 and 4 is uncertain. The

path through the graph that correctly represents the ancestral sequence is left undecided and the subsequent

alignment is allowed to consider all options and choose the one that best explains the true event. In the first

case of our simple example (Supplementary Figure 3a), the length difference was caused by an insertion and

the subsequent alignment of X and C uses the edge that skips over the inserted sites, from vertex 2 to vertex



a)

b)

c)

d)READ_553 AAGA-CG-CGACACGTTTAG-CG---AT---A-AA--AAAAT---------CCG-A--G-CGGGGGGA-TCTCAAA-AA--CA-ATT-AGT-GGAAA-TTCGAC-CA--ATCCGC-C-AGAAACG
READ_561 AAGA-CG-CG--A-G-TTAG-CG---AT---AAAA--AAAAT---------CCG-A--G-CGGGGGGA-TCTCAAA-AAC-CA-ATT-AGT----GATTTC-AC-C---AT-CGG-C-AG-AACG
READ_572 -AGA-CGCCG--ACG-TTAG-C---AAT---A-AA--AAAAT----------CG-A--G-CGGGGGGA-TCTC-AA-AA---A-ATT-AGT-GG-GA-TTC-AC-CA--AT-CGG-C-AG-AACG
READ_550 AAGA-CG-CG--ACG-TTAG-CC---AA---ATAA--AAAAT-------CCCCG-A--G-C--GGGGA-TCTC--A-AA--CA-ATT-AGT-GG-GA-TTC-AC-CA--AT-CGG-C-AG-AACG
READ_556 AAGA-CG-CG--ACG-TTAG-CG--AAT---A-AACCAAAAT--CGCTCCCCCG-ATCGCC--GGGGA-TCTC-AA-AA--CA-ATT-AGT-GG-GA-TTC-AC-CAACATCCGG-C-AG-AACG
READ_557 AAGA-CG-CGAC-CG-TTAG-CG--AAT--AAAAA--AAAAT-------CCCCG-A--GCC--GGGGACTCTCAAATAA--CA-ATT-AGT-GG-TA-TTC-ACGC---AT-C-G-C--G-AAC-
READ_573 AAGA-CG-CG--ACGTTTA--CGAAAATTAAAAAA--AAAAT-------CCCCG-A--G-CGGGGGGA-TCTCAAA-AA--CA-ATTAAGT-GGA-A-TTC-AC-CA--AT-CGGCC-AGAAACG
READ_564 AAGACCG-CGAC-CG-TTAG-CG-AAAT---A-AC--AAAAT-C-----CCCCGCA--G-C--GGGGA-TCTCAAG-AA--CATTTT-AGT-GG-GA-TTC-AC-CA--AT-C-G-C-AG-AACG
READ_567 AAGA-CG-CG--ACGCTTAGCCG-AAAT-----AA--AAAAT-------CCCCG-A--G-C--G-----TCTC-AA-AACACAT-TT-AGTCGG-GA-TTC-ACGCAAC-T-C-G-CAAGAAACG
READ_562 AAGA-CG-CG--ACG--TAG-CG---AT---A-AA--AAAAT-------CCCCC-A--G-CGGGGGGATTCTC-AA-AA--CA-ATT-AGT-GG-GA-TT---C-CA--AT-CGG-C-AG-AACG
READ_563 AAGA-CG-CGAC-CGTTTAG-CG--AAT---A-AA--AAAAT-------CCCCG-A--G----GGGGA-T-TC--A-AA--CA-ATT-AGT-GGGGA-TTC-AC-CA--AT-CGG-C-AG-AACG

Consensus AAGA-CG-CG--ACG-TTAG-CG--AAT---A-AA--AAAAT-------CCCCG-A--G-CGGGGGGA-TCTCAAA-AA--CA-ATT-AGT-GG-GA-TTC-AC-CA--AT-CGG-C-AG-AACG
Reference AAGA-CG-CG--ACG-TTAG-CG--AAT---A-AA--AAAATCC-----CCCCG-A--G-CGGGGGGA-TCTC-AA-AA--CA-ATT-AGT-GG-GA-TTC-AC-CA--AT-CGG-C-AG-AACG

Root graph

Reference

Supplementary Figure 1: (a) A regular sequence can be converted to a graph by connecting each character, repre-
sented by a vertex, with an edge to its preceding and succeeding character, and adding start and end vertices as the
unique end points of the graph. (b) The evolution of repetitive sequences, such as microsatellites consisting of tandemly-
repeated identical units, differs from that of complex sequences: repetitive sequences have very high rates of insertions
and deletions and tend to grow or shrink in steps of the unit length, violating the assumption that sequence sites evolve
independently and under an identical process. A PAGAN graph representing a linear sequence (a) can be extended to
model the stepwise evolution of repeat length with additional edges that skip over one or more of the repeat units (b);
in a pairwise alignment, the longer of the two repeat regions accounts for the length difference. (c) Graphs can describe
the errors made by the Roche 454 platform on the lengths of homopolymer runs, limiting the sequence uncertainty to
the base repeat and enabling correct alignment of adjacent regions. (d) Graphs can also contain the variation observed
between multiple reads from the Pacific Biosciences SMRT platform: this allows for an accurate pileup of SMRT reads
(top), reconstruction of high-quality consensus sequences (middle) and alignment of consensus graphs against other
sequences (bottom).
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a)

b)

c)

Supplementary Figure 2: (a) In addition to constitutive exons (red boxes), a gene may contain alternatively-spliced
exons (blue, green and yellow). (b) With differential splicing of mutually exclusive exons (blue and green in this example)
and cassette exons (yellow), one gene can produce multiple different transcripts. In the alignment of mRNA and cDNA
sequences, the correct matching of shorter transcripts may require creation of long gaps to account for the missing
exons. Although alignment errors may be reduced by adjusting the parameters of the method, this does not change the
fact that alternatively-spliced exons should neither be considered as insertions or deletions nor penalised as such. (c)
PAGAN graphs are ideally suited for modelling such non-linear dependencies and a single graph can represent the exon
combinations of all splicing variants, incorporating equally well mutually exclusive exons and exon skipping. When a
known gene structure is represented with such a graph (top), PAGAN can align transcripts from different isoforms to
the reference without incorrect penalisation of missing exons, allowing the target sequence to find the correct splicing
isoform across the exon boundaries (bottom).
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Supplementary Figure 3: (a, b) Progressive alignment of three sequence graphs consists of two pairwise alignments,
shown in blue and red/green. (c) The first alignment is identical for both data sets, creating graph X to represent the
inferred ancestor of A and B. In X, the character state of vertex 5 is Y, representing both pyrimidines (C and T), and
has two incoming edges, from vertices 2 and 4, to indicate that the presence of vertices 3 and 4 is uncertain. (d) The
optimal alignment path for graphs X and C, highlighted in blue in the dynamic programming matrix, jumps from vertex
2 in graph X to vertex 5 using the direct connecting edge; the edges flanking the skipped-over fragment are recorded as
unused (asterisks). (e) In contrast, the alignment of graphs X and D matches all vertices and the edge skipping over
vertices 3 and 4 is now unused. (f, g) Starting from graphs Y and Z at the root of the guide phylogeny and using the
alignments at internal nodes, one can reconstruct the inferred homology in the input graphs, i.e. the multiple alignment.
Although the alignment of A and B is identical in both data sets, the multiple alignments indicate that in the first data
set A has a two-character insertion whereas in the second data set B has a two-character deletion.
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5 in graph X (Supplementary Figure 3d). In the second case (Supplementary Figure 3b), the deletion in B

only affects the first alignment and the second alignment matches all the positions, ignoring the additional edge

(Supplementary Figure 3e).

When the algorithm reaches the root of the guide phylogeny, the pairwise alignments at the internal nodes of

the tree structure allow backtracking the progressive process and reconstructing the inferred homology among

the vertices of the input graphs. In our simple example, the resulting multiple alignments reveal that the first

case is indeed better explained by an insertion (Supplementary Figure 3f) whereas in the second case a deletion

has taken place (Supplementary Figure 3g).

2.1 Phylogenetic progressive alignment using sequence graphs

When a phylogenetic alignment is inferred using a progressive algorithm, the distinction between and correct

representation of insertions and deletions become crucial. Sites inserted in a sequence at some point in its evo-

lution are not homologous to any sites in the ancestor sequences before the insertion event; nor are independent

insertions in other evolutionary lineages homologous to them. In a multiple alignment independent insertions

should be placed in columns of their own and, to achieve this with a progressive algorithm, the matching of

insertion sites should be prevented at the later stages of the alignment process despite their possible similarities

to some non-homologous sites [14]. With sequence graphs, this could be done simply by removing all the edges

not used in the previous alignment (those marked with asterisks in Supplementary Figure 3d) and thus prevent-

ing the vertices for the apparent insertion being accessed. This would closely resemble the greedy approach of

PRANK [14], making the alignment similarly sensitive to errors in the guide phylogeny and failing to properly

account for overlapping insertion and deletion events.

Instead of calling insertions based on one outgroup alignment only, PAGAN assigns weights to the graph

edges and adjusts them according to the phylogenetic evidence. The edges connecting the rest of the graph to

the apparent insertions can be made less favourable with growing support for these sites being true insertions

or completely removed if the evidence is considered sufficient; conversely, edge weights can be reset in the light

of later evidence that the sites are not insertions. The principle of insertion calling and edge weighting is the

same for the de novo alignment and the reconstruction of sequence history for a reference alignment.
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3 Algorithm

Notation: The alignment is performed according to a rooted binary guide tree that for N extant sequences

consists of 2N -1 nodes and 2N -2 branches connecting them. We describe the tree with its root node drawn to

the extreme left; a node is terminal if it is not connected to nodes on its right side, otherwise it is internal. An

internal node is the parent of two child nodes that are sisters to each other. Each node is associated with a

sequence.

Sequences are represented by partial order graphs that consist of vertices and edges. We consider a pairwise

alignment of sequence graphs at sister nodes x and y. Graphs x and y consist of vertices x0, x1, . . . , xn, xn+1

and y0, y1, . . . , ym, ym+1. Start vertices x0 and y0 and end vertices xn+1 and ym+1 are empty and have no

incoming and no outgoing edges, respectively; their only purpose is to define unique end points for the graph.

Other vertices are associated with a character, representing a set of nucleotides, amino acids or codons, and

have at least one incoming and one outgoing edge. For the standard alignment algorithm, only the incoming

edges are relevant: edges egxi
connect vertex xi to preceding vertices xj (j < i) and have weights associated

with them; the superscript g indicates that a vertex may have multiple incoming edges. Function chr(.) gives

the character associated to a vertex, and functions lft(.) and wgt(.) give the index of the left end of an edge

(i.e. start vertex) and the weight of an edge, respectively.

The pairwise alignment of graphs x and y defines a new graph, z, that represents their parent. By breaking

a guide phylogeny into parent-children triplets and resolving these in order from the nodes towards the root, the

pairwise algorithm can be generalised to progressive multiple alignment. Details of how the pairwise alignments

are used to construct the parent graph, i.e. define the vertices and transfer the edges from the child graphs, are

given in the sections below.

Alignment algorithm: Our affine-gap pairwise alignment algorithm is loosely based on [7, 2, 14]. The

algorithm consists states M , X and Y where either two sequence vertices are matched, a sequence vertex is

matched against a gap or a gap is matched against a sequence vertex, respectively. Moves to M are associated

with a cost, a normalised evolutionary score for matching characters at vertices xi and yj , given by function:

sco(xi, yj) = log

(
qz P ( chr(xi), chr(yj); t )

q( chr(xi) ) q( chr(yj) )

)
(1)

where q(a) is the equilibrium frequency of character a, qz = ( q( chr(xi) ) + q( chr(yj) ) )/2, and P (a, b; t) is

the substitution probability between characters a and b given the evolutionary distance t and the substitution

model. For P (a, b; t), we use the models of Tamura and Nei [24], Whelan and Goldman [25] and Kosiol,

Holmes and Goldman [10] and the evolutionary distances as provided in the guide tree. Moves to X and Y

are associated with the gap opening cost δ and moves within them with the gap extension cost ε. The former,

δ = log(1 − e−rt), is a function of the insertion-deletion rate r and the evolutionary distance t, and the latter,

ε = log(ε), of the gap extension probability ε. Parameters r and ε can be provided by the user; the default

values are based on empirical estimates from literature.

Each move is additionally associated with the probability of the edges used; for computational reasons,

the edge probabilities are converted to log-scale and are hereafter called ‘edge weights’. In the alignment of

two linear graphs representing sequences with no uncertain sites, all edge weights equal zero and the algorithm

reduces to the standard one; cases where the edge weights can be non-zero, e.g. for graphs representing ancestral

sequences or uncertainties in extant sequences, are explained below. Moves to X only affect index i and those

to Y index j, and thus have the associated costs wgt(egxi
) and wgt(ehyj

), respectively. Moves to M and to the

end state affect both indices and have the associated cost wgt(egxi
) + wgt(ehyj

).

It is notable that, in comparison to the traditional scoring function (e.g. ref. [2], page 15), our scoring

function (Equation (1)) has additional term qz and thus does not produce standard log-odds scores. We do not
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fully understand why the performance of this function is superior to that of the standard function but suspect

that the explanation is related to the way that progressive algorithms represent ancestral sequences and also

include sites inserted in the descendants (see sub-section Reconstruction of ancestral graph). The function

used here follows the one implemented in PRANK [14] and may not optimal for all alignment tasks with the

graph approach due to the differences in the modelling of insertions. We intend to study the scoring functions

in greater detail and believe that partial-order graphs provide more elegant ways to correct for the length of

ancestral sequences if that indeed is the explanation. Improvements in the scoring function–and thereafter

computation of a meaningful full probability for a solution–should also allow for the estimation of algorithm

parameters from the data.

Alignment recursion: The recursions to find the optimal alignment for two graphs resemble those for the pair-

wise alignment of sequences with an affine gap cost [7]. A recursive computation defines matrices vX , vY and vM

as the scores of obtaining the alignment x1 . . . xi:y1 . . . yj by the extension of sub-alignment x1 . . . xi−k:y1 . . . yj

or x1 . . . xi:y1 . . . yj−l by a gap, or x1 . . . xi−k:y1 . . . yj−k by a match, respectively (where k ≥ 1; l ≥ 1).

However, the recursions for the graph alignment differ from the standard affine-gap alignment in two aspects:

first, the graph approach incorporates the edge weights into the alignment cost and, second, it chooses a move

to the current state not only from the possible preceding states but also, within each state, from all preceding

cells connected to the current cell by incoming edges. As in the standard affine-gap alignment, pointer matrices

recording the move chosen at each cell (i, j) need to be stored. For the graph alignment, however, we need to

record both the moves between vX , vY and vM , and the edges that were used.

The recursions for vX , vY and vM can then be defined as:

Initialisation: v?(i, -1), v?(-1, j) are set to −∞; vX(0, 0) = vY (0, 0) = −∞; vM (0, 0) = 0.

Recursion: for i = 1, ..., n; j = 1, ...,m:

vX(i, j) = maxg


vX( lft(egxi

), j) ) + wgt(egxi
) + ε

vY ( lft(egxi
), j) ) + wgt(egxi

) + δ

vM ( lft(egxi
), j) ) + wgt(egxi

) + δ

;

vY (i, j) = maxh


vX( i, lft(ehyj )) ) + wgt(ehyj ) + δ

vY ( i, lft(ehyj )) ) + wgt(ehyj ) + ε

vM ( i, lft(ehyj )) ) + wgt(ehyj ) + δ

;

vM (i, j) = maxg,h


vX( lft(egxi

), lft(ehyj ) ) + wgt(egxi
) + wgt(ehyj ) + sco(xi, yj)

vY ( lft(egxi
), lft(ehyj ) ) + wgt(egxi

) + wgt(ehyj ) + sco(xi, yj)

vM ( lft(egxi
), lft(ehyj ) ) + wgt(egxi

) + wgt(ehyj ) + sco(xi, yj)

.

(2)

Termination:

vE = maxg,h


vX( lft(egxn+1

), lft(ehym+1
) ) + wgt(egxn+1) + wgt(ehym+1)

vY ( lft(egxn+1
), lft(ehym+1

) ) + wgt(egxn+1) + wgt(ehym+1)

vM ( lft(egxn+1
), lft(ehym+1

) ) + wgt(egxn+1) + wgt(ehym+1)

. (3)

The dependencies between the states in the recursions can be depicted as:

8



s

e

M

X

Y

ǫ+wgt(ehyj
)

ǫ+wgt(egxi
)

δ+wgt(egxi
)

δ+wgt(ehyj
)

δ+wgt(ehyj
)

δ+wgt(egxi
)

sco(xi, yj)+
wgt(egxi

)+wgt(ehyj
)

sco(xi, yj)+
wgt(egxi

)+wgt(ehyj
)

sco(xi, yj)+
wgt(egxi

)+wgt(ehyj
)

sco(xi, yj)+wgt(egxi
)+wgt(ehyj

)

δ+wgt(egxi
)

δ+wgt(ehyj
)

wgt(egxn+1
)+wgt(ehym+1

)

wgt(egxn+1
)+wgt(ehym+1

)

wgt(egxn+1
)+wgt(ehym+1

)

where s indicates the start at vM (0, 0) and e the end at vE .

Reconstruction of ancestral graph: The optimal alignment for two graphs defines a new graph representing

their ancestor. The matching of vertices included in the optimal solution is found using a standard algorithm

that backtracks the edges used, starting from the end vertices and finishing at the start vertices. Each move

backwards in the alignment matrices defines a new vertex in the ancestor graph: this vertex has one descendant

(a vertex in either x or y) if the alignment has created a gap (moves to states X and Y ; vertices 3 and 4 of graph

X in Supplementary Figure 3c) and two descendants (vertices in both x and y) if the alignment has matched

the vertices (moves to state M ; vertices 1, 2, 5 and 6 of graph X in Supplementary Figure 3c). Pointers to

descendant vertices are stored such that the inferred homology can be reconstructed after finishing the full

multiple alignment.

When the chosen edge connects a vertex to another one not immediately preceding the current, also the

vertices in-between them are included in the reconstructed ancestral graph with flags indicating their status

as skipped-over positions. The main advantage from this is that it allows postponing the insertion calling to

a later point (see below) and thus makes the inference of type of mutation events, insertions or deletions, less

sensitive to errors in the order of aligning the sequences. However, their inclusion also means that the length

of a graph for an ancestor may not correspond to the true length of the ancestral sequence but is as long as

the alignment of graphs below it. This follows the practice used in progressive algorithms with an important

difference: the status flags at the vertices record the effective path used for each alignment and thus allow

inferring the true composition and length of ancestral sequences.

When reconstructing an ancestral graph, the incoming edges of child vertices are transferred to the parent

without creating duplicates. This automatically connects a vertex immediately after a gap to two vertices,

one vertex within the gap and the other vertex immediately before the gap (see graph X in Supplementary

Figure 3c); these two edges represent the uncertainty of the cause of the gap, either an insertion or a deletion,

and thus the uncertainty of the true composition of the ancestral sequence. In some situations, the length

difference between two graphs is not caused by a natural mutation event and thus should not be considered as a

potential insertion whose correct alignment requires an additional edge to be added in the graph. We consider

two causes for this, terminal gaps caused by missing data in one of the graphs and spacers between paired-end

reads. In these cases, no edge skipping over the gap is created (in the case of terminal gaps this is optional)

and the gap created in one alignment cannot be freely re-used in a later alignment. However, one has to ensure

that each vertex has both an incoming and an outgoing edge; if necessary, an edge to a vertex immediately

adjacent to the current one is added.

Edge weights for reconstructed edges: A vertex may have multiple incoming edges, their potentially

different weights representing the probability of the true preceding vertex. For ancestral sequences, multiple
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edges allow description of the ambiguity of their true composition, the presence of characters at some posi-

tions, caused by the different properties of insertion and deletions that cannot be distinguished by pairwise

comparisons. Our graph representation has no limit for the number of incoming edges allowed for any vertex

and, by modelling the edges as independent objects, information can be attached on them and then adjusted

dynamically as a function of the progressing alignment.

We have implemented several functions to adjust the edge weights based on phylogenetic information. The

simplest ones define the edge weights as a function of either the number of alignments (default option) or the

cumulative evolutionary distance since the last time the edge was used. More complex functions have thresholds

for the number of alignments or the evolutionary distance until which the edges can be re-used and set punitive

weights for them (or remove the edges completely) after that. For all functions, the edge weighting is kept

independent of the length of the fragment by only adjusting the edges connecting the fragment to the rest of

the graph (see Supplementary Figure 3d). The performance of alternative functions for edge weighting and

edge pruning will be assessed in future work.

Edge weights make the graph alignment algorithm “phylogeny-aware” and play a central part in de novo

alignment of large sets of sequences. Their role in alignment extension is smaller and is further constrained by

the possible errors in inferred reference alignments. With complete removal of edges, fragments appearing as

insertions could erroneously be disconnected from the graph and, at a later stage of the process, the missing edges

could make the alignment solution indicated by the reference sequences invalid. Less aggressive edge pruning

does not appear to cause problems, though, and the alignment accuracy against graphs with redundant sets of

edges is good.

Character states for reconstructed vertices: For computational efficiency, we sacrifice the probabilistic

description of ancestral sequences [see 14] and instead use weighted parsimony to reconstruct the character

states. To further speed up the alignment, we have implemented an approach that combines the ancestral

state representation from the Fitch algorithm [4] with the variable cost scheme from the Sankoff algorithm [20].

Using this, we perform the “Up phase” of the parsimony reconstruction along with the progressive alignment

stage (or when reading in a pre-defined alignment), possibly leaving some character states ambiguous, and then

do the “Down phase” to resolve some of the ambiguous states after reaching the root of the guide phylogeny.

The character state of a vertex is associated with a set of real characters represented by an ambiguity

symbol. Using Equation 1 and the standard ambiguity code to represent the possible nucleotides, we can

pre-compute hash tables that give the weighted parsimony cost for matching any two nucleotide symbols (the

minimum cost between characters in the two sets) and the corresponding ancestral character state for their

parent vertex (either intersection or union of the sets, see [4]). The pre-computation of all combinations of

character sets is feasible for nucleotides but not for amino acids or codons. For those, we only consider ambiguity

states representing either the set of all characters/codons (X and NNN, respectively) and the sets representing

combinations of two characters/codons. We pre-compute hash tables that give the weighted parsimony cost for

matching any two ambiguity symbols and the corresponding ancestral character states, representing at most two

characters/codons (or all characters/codons, if neither child node contains any information), for their parent

vertex.

Character states for reconstructed vertices in NGS sequence placement: In phylogenetic placement

of multiple sequences from the same organism, the overlapping parts of the new sequences are expected to be

identical and any differences observed represent either heterozygosity (that we ignore), sequencing error, or

placement/alignment error. For the placement of DNA sequences – which are expected to be highly redundant

and of varying quality when coming from NGS platforms – we have implemented an alternative function to

reconstruct the most probable ancestral character states for the pseudo parent nodes. Using the majority

consensus rule, the ancestral character state is defined as the most frequent base at that position among the

newly placed reads, using the standard parsimony in the case of a tie; if no new read is aligned at the position,
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the normal character state reconstruction is used.

The advantage of the majority consensus rule is that a small number of low-quality or misaligned reads

does not corrupt the progressive alignment process. Furthermore, the tracking of base frequencies at the

reconstructed ancestral sequences allows consensus-based assembly of phylogenetically-related reads. The very

last parent for a set of reads defines the contig to represent that particular read cluster. The alignment

positions present only in a small number of reads can be ruled out as errors and excluded from the contig. For

the positions that are present in the outgroup but not in the reads, the outgroup information is used to indicate

the amount and character states of potentially missing sequence, bridging together unconnected regions and

creating full-length contigs.

Pre-processing and graph representation of NGS data: A standard sequence graph consists of vertices

x0, . . . , xn+1 where the first and the last vertex are empty and vertices x1, . . . , xn each represent a character

from a sequence. Each vertex is connected only to the vertex before it and the one after it.

For the alignment of sequence reads from NGS platforms, we have implemented functions to trim and

mask the sequences based on their quality scores and to add information on the character uncertainty in the

graphs constructed from them. We allow trimming the low-quality ends of the reads using sliding windows

that progress inwards until the mean quality score exceeds a threshold; if the trimming reduces too much of

the read, the read is completely discarded. Independently of trimming, we can mask sequence positions with

low quality scores and replace them with N’s that indicate ambiguity and match with all other characters.

The quality values for NGS data represent the confidence on the base calls and are ill-suited for describing

ambiguous lengths of mononucleotide runs in Roche 454 data. Instead of quality values, we model the length

uncertainty as a function of the length itself and allow adding extra incoming edges to the vertex immediately

following the mononucleotide run. For runs of three or four bases, we add an edge that skips over the last

vertex and for runs longer than that a further edge that skips over the last two vertices. As the length errors

are rather infrequent, the edges have unequal weights and the full length run is favoured. Weights are further

adjusted based on the quality of the last base of the run.

NGS reads are not expected to be of full length and the creation of terminal gaps is automatically penalised

less heavily than in normal global alignment. By default, terminal gaps have no gap open cost and have a lower

gap extension cost. For paired-end data, the same lowered gap costs are applied to the spacers of read pairs.

Overlapping paired-end reads are aligned pairwise using the same alignment algorithm but setting the terminal

gap penalty very low. If the alignment indicates significant overlap with a high base identity, the pair is merged

into one longer sequence. For each position, the higher-quality base call from the two reads is selected retaining

its original quality score.

Placement of sequences: PAGAN supports guided and unsupervised placement of sequences. If the origin

of data is known, the sequences can be assigned to specific nodes in the reference phylogeny using an extension

of New Hampshire eXtended (NHX) tree format [26] and defining either a single target node or a set of

target nodes for each sequence. If multiple nodes are given, the read is aligned against each of them and the

proportion of identities inferred between the read and the target is used to select the best placement. If the

origin is unknown, PAGAN can search for the optimal placement. This can be exhaustively using PAGAN’s

own alignment algorithm or, as that can be time-consuming, using the fast local alignment of Exonerate [23].

The two approaches can also be combined and Exonerate can either select one target node or provide a list of

potential target nodes from which PAGAN chooses the optimal one. If the sequence matches multiple locations

equally well, PAGAN can add it to all locations or just one of them.
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4 Extension of real alignments

We tested PAGAN on the extension of real multiple alignments with new protein and DNA/NGS sequences.

4.1 Extension of EnsemblCompara GeneTrees alignments with protein fragments

We first used PAGAN to extend EnsemblCompara GeneTrees alignments with protein fragments. A recent

update of Ensembl included Northern white-cheeked gibbon (Nomascus leucogenys) and all alignments and

corresponding phylogenies had to be updated. Re-computation of thousands of large data sets is not only

laborious but also technically difficult as many gene models built from low-coverage genome sequences are in-

complete and the short protein fragments contain little information for their accurate placement and alignment.

PAGAN can do unsupervised placement of sequences but also provides an option to limit the placement to

certain locations. The use of such guided placement guarantees that the short fragments will not be placed to

phylogenetically implausible locations and thus avoids the problem of “split genes”. However, it also assumes

that all possible target locations for the new sequences are known in advance; in the case of Ensembl, this

probably is true for many well-sampled clades.

An example of PAGAN alignment of gibbon protein fragments to a reference alignment is shown in Sup-

plementary Figure 4. We defined a guide tree where the ancestors of Hominidae for the different paralogues

were tagged as potential target locations for the alignment and let PAGAN to find the best placement for each

fragment. As the sequences were known to be fragmented, we also used the option to merge fragments placed

at the same target node into longer contigs, the amount of missing data estimated from the target ancestor

(Supplementary Figure 4c, bottom). The alignments created by PAGAN look good but, as they are based on

real data, their correctness cannot be confirmed.

One should note that the relative alignment of the sequences in the reference alignment does not change in

the alignment extension and only new data is added. In the case of large repositories such as Ensembl, this

ensures that the new release will not contain unwanted surprises and the possible dependencies on the previous

versions will not be broken.

4.2 Extension of EnsemblCompara GeneTrees alignments with NGS data

PAGAN includes several features especially targeted for the modelling and pre-processing of NGS data. We

tested it in the extension of EnsemblCompara GeneTrees alignments with real Roche 454 data as well as

fragmented true sequences with added sequencing noise.

We downloaded Roche 454 reads for prairie vole (Microtus ochrogaster) from the NCBI SRA [21] and found

a set of reads to be similar to the myosin genes. We named eight internal nodes in the phylogenetic tree,

the ancestors of the rodent paralogues, as the potential target nodes (indicated with blue dots in the tree of

Supplementary Figure 5) and let PAGAN find the best placement for the reads. Although the read coverage was

relatively low, the placement created distinct paralogous clusters with the aligned reads showing high similarity

to the surrounding sequences. When we analysed the same data using Newbler’s cdna assembler (v.2.3) [17],

the paralogue information was lost and all reads were collapsed into one contig, non-matching reads being

discarded.

The correct placement and alignment for the prairie vole sequences are not known. To have more control

on that, we created pseudo-NGS data by removing one of the species in the reference alignment, fragmenting

its full-length sequences to short reads and adding empirical sequencing noise in the data. More precisely,

we considered the same EnsemblCompara GeneTrees alignment for the myosin gene family and removed the

five sequences from kangaroo rat (Dipodomys ordii). Based on these sequences, 125-base overlapping paired-

end Illumina reads were created using simNGS [18] and then merged (overlapping pairs) and trimmed using
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PAGAN. We named the same eight internal nodes in the myosin phylogeny as the potential target nodes and

let PAGAN find the best placement for each read among those and then progressively align the reads to the

chosen target nodes.

PAGAN placed most reads into clusters of related reads (Supplementary Figure 6a, background in different

colours), and for the two top-most clusters (pink and cyan), the consensus contigs built of the aligned reads

are nearly complete (523/528 and 504/510 of the sites, respectively) and contain no errors (Supplementary

Figure 6c). However, two of the clusters (green and orange) are partially mixed and one cluster (yellow) is split

in two places. Interestingly, seven and eight paralogous copies of myosin gene are known in mouse and rat,

respectively, whereas only five copies are found in the low-coverage genome of kangaroo rat and not all of these

group together with other rodent sequences in the EnsemblCompara GeneTrees phylogeny (Supplementary

Figure 6a). The split of the yellow cluster between two locations suggests that that particular kangaroo rat

gene has either been mis-assembled in the current gene model or some of its exons have been affected by a

gene conversion or genomic arrangement event and are now more similar to a different gene in related species.

Similar events may explain the incorrect placement of two other kangaroo rat sequences (green and orange) in

the original alignment and the subsequent mixing of the read clusters.

The examples show that PAGAN can accurately align very short fragments of transcripts, as short as

potentially some of the raw Illumina reads that are being produced. Although we don’t envision aligning

read by read using PAGAN at this point in time, we expect that using very conservative pre-assemblies of

raw reads will produce unambiguous short contigs, devoid of artifacts like chimaeric sequences from different

transcripts. We consider these pre-assembled contigs as very suitable input for PAGAN in RNA-seq projects.

Also, given that a FASTG standard format for sequence graphs is being finalised at the time of this writing

(http://assemblathon.org), we expect that with minimal modifications, PAGAN will be able to use FASTG

graphs from de novo pre-assembly of raw reads as suitable input.
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Supplementary Figure 4: (a) The EnsemblCompara GeneTrees alignment ENSGT00620000087714 (version 1, e!v62)
without the gibbon sequences (top). The ancestor of Hominidae for the different paralogues is indicated in the tree with
red dots. The graph shows a part of a reconstructed ancestor with two uncertain gaps (bottom). (b) The gibbon genome
is fragmented and the gene models are often incomplete. Seven protein fragments show high similarity to the gene family
ENSGT00620000087714. (c) PAGAN finds the target node for each fragment and adds them to the reference alignment
(top). PAGAN can also merge fragments placed to the same target node into a longer contig, estimating the amount of
missing data from the closest ancestral sequence (bottom).
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Supplementary Figure 5: We downloaded Roche 454 reads for prairie vole (Microtus ochrogaster) from the NCBI
SRA [21] and found a set of reads to be similar to the rodent myosin genes. We named eight internal nodes in the
EnsemblCompara GeneTrees phylogeny for the myosin gene family, the ancestors of the rodent paralogues, as the
potential target nodes (blue dots) and let PAGAN find the best placement for the reads among those nodes and then
progressively align the reads mapping to each target node to the reference alignment. This created distinct paralogous
clusters (yellow background) and, with the exception of their 5’ end, the aligned reads showed high similarity to the
surrounding sequences. The long gaps in the 5’ end of the alignment suggest that the added reads contain first exons
that are different from the one in the Ensembl canonical transcript or include 5’ UTRs not present in the reference
alignment.
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b)

rat ATGGCACCCAAGAAGGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTTTTCTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAGGAGGCTTTCACTGTAATTGATCAGAACAGGGATGGCATTATTGACAAGGAGGATCTTCGGGACACCTTTGCGGCCATGGGCCGTCTCAATGTGAA
mouse ATGGCACCCAAGAAGGCCAAGAGAAGGGCAGGAGCGGAAGGGA-----------GCTCCAACGTCTTCTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAGGAGGCGTTCACTGTAATTGATCAGAACAGGGATGGCATTATCGACAAAGAGGATCTTCGGGACACCTTTGCAGCCATGGGCCGTCTCAATGTGAA
ancestor ATGGCACCCAAGAAGGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTCTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAGGAGGCKTTCACTGTAATTGATCAGAACAGGGATGGCATTATTGACAAGGAGGATCTTCGGGACACCTTTGCAGCCATGGGCCGTCTCAATGTGAA
kangaroo_rat ATGGCACCTAAGAAAGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA

consensus NNNNNACCTAAGAAAGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c12 -----------------CAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCG------------
gene_A.c110 -----------------CAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGG----------------------------------------------
gene_A.c62 ----------------CCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGC------------------------
gene_A.c73 --------------------------------------------------------------GTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c84 --------------------------------------------------------TCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c35 -----------------CAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c53 ----------AGAAAGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c97 --------------------------------------------------------------------------TTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c2 ----------------------------------------------------------------------------------------------------------------------------------------------------------GGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c101 -----------------------------------------------------------------------------------ACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c49 -----------------------------------------------------------------------------------------------------------------------------------------GGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c56 --------------------------------------------------------------------------TTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_B.c93 ------------AGAGCCCGGAAAAGGGT-----------GGACGGAGCTGCCGGCTCCAACGTCTTCTCCATGTTTGACCAGTCCCAGATCCAGGAGTTCAAGGAGGCCTTCACCATCATGGACCAGAACCGGGACGGCTTCATCGATAAGGAAGACCTGCGCGACACCTTTGCCGCCCTGGGCCGCATCAACGTGAA
gene_A.c34 --------------------------------------------------------------------------------------------------------------------------------------------------GACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c40 -----ACCTAAGAAAGCCAAGAGAAGGGCAGCAGCAGAAGGGA-----------GCTCCAATGTCTTTTCCATGTTTGACCAGACTCAGATCCAGGAGTTCAAAGAGGCCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA
gene_A.c52 ------------------------------------------------------------------------------------------------------------CCTTCACTGTAATTGATCAGAACCGTGATGGCATTATTGACAAGGAGGACCTTCGGGACACCTTCGCAGCCATGGGCCGCCTCAATGTGAA

c)

Supplementary Figure 6: (a) PAGAN places most of the simulated Illumina reads, based on five different myosin
sequences from kangaroo rat (Dipodomys ordii ; different background colours), in clusters of related sequences. The eight
alternative locations (the node for mouse or rat or mouse/rat ancestor) to add the reads are indicated with blue dots
and the phylogenetic positions of the original kangaroo rat CDS sequences are shown with dots whose colour matches
the background of the aligned reads. (b) The graph representing an inferred ancestor marked by the green square in (a)
shows positions with uncertain character state and additional edges indicating insertions or deletions. For the uncertain
positions, the number of alignments since the edge was last used is shown in square brackets. (c) The kangaroo rat
sequence from the cyan clade is more similar to the inferred ancestor than to the rat and mouse sequences (top). The
reconstructed kangaroo rat contig (‘consensus’) covers 504 of the total 510 sites in the true sequence and has no errors
(bottom, first sequence). A misplaced read (‘gene B’) causes a gap in the alignment but does not affect the resulting
contig sequence. The part of the alignment highlighted is indicated with a red box in (a); not all reads contributing to
the contig are shown.
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5 Comparison of alternative methods for alignment extension

We tested five alignment methods for both data types and additional two methods that only support DNA or

protein data. The methods tested for both were PAGAN/guided, PAGAN/free, HMMER [3], MAFFT [9] and

ClustalW [11]; for DNA we also used PaPaRa [1] and for protein ClustalO [22]. For PAGAN/guided, the species

of origin (but not the correct paralogous copy) for the QS were provided, giving two and three target nodes for

the Primate and Rodent QS. We assessed the accuracy of alignment extension by measuring the proportion of

true homologies recovered between the QS and the closest human/mouse reference sequence.

Data simulation Test data were simulated using programs INDELible [5] and simNGS [18]. The model

section in the INDELible configuration file was the following:

[MODEL] codonmodel

[submodel] 2.5 0.15 // M0 with kappa=2.5, omega=0.15

[insertmodel] POW 1.7 15 // Power law insertion length distrib. (a=1.7, M=15)

[deletemodel] POW 1.8 15 // Power law deletion length distrib. (a=1.8, M=15)

[indelrate] 0.05 // insertion rate = deletion rate = 0.05

and the length of the root sequences was 500 codons.

The query sequences (QS) for the extension were created by sampling fragments of the full length query

using an in-house-built tool that could also handle amino-acid data.

The command used to simulate Illumina NGS reads was:

cat QS | simNGS --ncycles NC RF > QSQ

where the following abbreviations are used:

NC=number of sequencing cycles (30, 60 or 120)

RF=empirical runfile (s 3 4x.runfile, provided with simNGS)

QS=query sequences

QSQ=QS (fastq)

Reference phylogeny The reference phylogeny was inferred using the following command:

raxmlHPC -m GTRGAMMA -s RAP -n RT -o Ornithorhynchus anatinus

where the following abbreviations are used:

RAP=reference alignment (phylip)

RT=reference phylogeny (newick)

Alignment extension The reference alignments were extended with new sequences using several different

alignment methods. The commands used were:

PAGAN guided (v. 0.33)

pagan --ref-seqfile RA --ref-treefile RTX --queryfile QS --outfile OA --one-placement-only
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PAGAN free (v. 0.33)

pagan --ref-seqfile RA --ref-treefile RT --queryfile QS --outfile OA --fast-placement

--test-every-internal-node --exhaustive-placement

HMMER (v. 3.0)

hmmbuild --enone --dna RAH RAS [ or hmmbuild --enone --amino RAH RAS ]

hmmalign --mapali RAS RAH QS > OAS

MAFFT (v. 6.860b)

mafft --add QS RA > OA

ClustalW (v. 2.1)

clustalw -profile1=RA -profile2=QS -sequences -output=fasta -outfile=OA

ClustalO (v. 1.0.3)

clustalo --p1=RA --in=QS --out=OA

PaPaRa (v. 7.2.6; RAxML)

papara -f X -n OAP -m GTRGAMMA -t RT -s RAP -X QS

where the following abbreviations are used:

RA=reference alignment (fasta); RAS=RA (stockholm); RAP=RA (phylip); RAH=RA (hmm)

RT=reference phylogeny (newick); RTX=RT (nhx)

QS=query sequences

OA=output alignment (fasta); OAS=OA (stockholm); OAP=OA (phylip)

Additional tools were used to convert between different alignment formats.

HMMER was also tested without option --enone and MAFFT with option --localpair but these did not

improve the results.

Correction for deleted characters The accuracy of PaPaRa-generated alignments was assessed after infer-

ring the positions were it had created insertions (and subsequently deleted characters) in the query sequences.

To do this, we walked through the two sequences (i.e. in the input and output) and, whenever the character

states did not match, inserted gaps in the aligned query sequence. In the cases that a sub-string deleted by

PaPaRa starts with the same character(s) that immediately follow(s) it, this approach cannot infer the position

of the gap with certainty and may overestimate the error. However, this is true in any other analysis trying to

re-create full sequences from PaPaRa alignments: once characters have been deleted, the sequences cannot be

reconstructed without ambiguity.

Memory usage, run times The memory usage was tested on a Linux system and is based on the maximum

value of VmSize in /proc/$pid/status during the run of the program. The execution times are the real times

used on an otherwise idle system.
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Primate 1
EnsTr1 EnsTr2 EnsTrT3

PAGAN node 30 60 120 full 30 60 120 full 30 60 120 full

guided
8 93 93 97 100 89 94 97 100 90 95 99 100

33 7 7 3 0 11 6 3 0 10 5 1 0

free

1 7 4 1 0 7 3 0 0 5 2 0 0

6 1 1 1 0 1 2 0 0 2 1 0 0

7 5 6 3 0 5 4 3 0 6 4 2 0

8 19 38 56 76 25 43 56 70 31 43 51 68

9 1 2 1 0 2 2 1 0 2 1 1 0

10 4 8 17 19 8 12 21 26 10 16 26 30

11 1 4 6 2 2 4 5 3 3 5 5 1

17 2 3 1 0 2 2 0 0 2 1 1 0

23 3 2 1 0 2 1 0 0 1 1 0 0

24 5 4 2 1 3 2 1 0 2 2 1 0

25 1 3 5 1 1 3 4 1 2 5 6 1

44 6 5 2 1 4 4 2 0 3 3 1 0

Rodent 1A
EnsTr1 EnsTr2 EnsTr3

PAGAN node 30 60 120 full 30 60 120 full 30 60 120 full

guided
15 85 87 93 99 78 83 93 100 74 82 92 100

21 9 8 5 0 14 12 6 0 15 13 7 0

40 6 5 2 1 8 5 1 0 11 6 1 0

free

10 2 1 1 0 3 2 1 0 3 2 1 0

11 1 2 3 1 3 4 3 0 4 4 3 0

13 14 9 4 0 10 6 3 0 8 4 2 0

14 12 18 20 6 13 14 15 7 14 13 12 5

15 12 25 44 78 16 29 43 81 18 30 44 80

16 2 1 0 0 2 1 0 0 2 1 0 0

17 4 7 10 7 4 7 11 2 4 9 12 6

21 2 1 0 0 1 1 0 0 1 1 0 0

23 2 2 1 0 2 2 1 0 2 2 1 0

24 3 4 5 4 3 5 6 7 2 5 8 6

25 1 3 3 3 2 3 5 3 2 5 6 3

44 4 3 1 0 2 2 1 0 2 3 2 0

Supplementary Figure 7: The target nodes for the extension using the PAGAN guided approach are shown in
the full reference tree (left; magenta for Primate, red for Rodent). With PAGAN free, most QS for Primate 1 and
Rodent 1A are expected to fall in the top part of the tree (right). The tables show the percentage of protein QS placed
at the corresponding node for Primate 1 and Rodent 1A. Placement to a wrong node typically indicates high sequence
conservation and does not necessarily affect the accuracy of the homology inference. The results are based on analyses
using the true simulated reference phylogeny; other results are based on analyses with inferred phylogenies.
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Supplementary Figure 8: The accuracy of alignment of DNA (top row) and protein (bottom row) query sequences
against the corresponding reference alignment using different alignment methods. The x -axis indicates the length of the
fragments aligned and the sub-panels show two of the five query species analysed. Columns a–c correspond to trees with
branch lengths multiplied by 1.5, 2.0 and 2.5, respectively. The accuracy is measured as the correctness of the site-wise
homology inference with respect to the closest human/mouse reference sequence.
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Supplementary Figure 9: The accuracy of alignment of query sequences with (NGS) and without (DNA) sequencing
noise. Sub-panels a–c correspond to trees with branch lengths multiplied by 1.5, 2.0 and 2.5, respectively.

20



6 Extension of large alignments

The data were downloaded from http://www.cs.utexas.edu/users/phylo/software/sepp/submission/sims.tar.gz.

We analysed half of each test set (M2-M4; replicates R0-R9) using PAGAN and hmmalign. We used the true

simulated reference alignments and, for the PAGAN analyses, the true reference phylogeny with branch lengths

estimated with RAxML. For hmmalign, we tested also option --enone but found it producing slightly less

accurate results. The commands used were:

PAGAN fast heuristics (v. 0.37)

pagan --ref-seqfile RA --ref-treefile RT --queryfile QS --outfile OA --very-fast-placement

--test-every-node

HMMER (v. 3.0)

hmmbuild --dna RAH RAS

hmmalign --mapali RAS RAH QS > OAS

The accuracy of the resulting extended alignment was measured as the proportion of true homologies

recovered between the QS and its closest reference sequence (based on the original simulation phylogeny). False

homologies were not penalised and correctness of insertions inferred were not measured. The reported values

are the mean accuracies and the proportion of fragments aligned by each method.
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7 Impact of reference alignment composition to alignment accuracy

Data simulation Test data were simulated using programs INDELible [5] and simNGS [18]. The model

section in the INDELible configuration file was the following:

[MODEL] codonmodel

[submodel] 2.5 0.5 // M0 with kappa=2.5, omega=0.5

[indelmodel] POW 1.8 30 // Power law ins-del length distrib. (a=1.8, M=30)

[indelrate] 0.05 // insertion-deletion rate = 0.05

and the length of the root sequences was 500 codons.

Synthetic NGS reads were created with simNGS using the commands:

cat FQ | simLibrary --insert 1 --readlen 90 --coverage 5 --bias 1 > QS

cat QS | simNGS --ncycles 125 --paired paired -o fastq RF > QSQ

where the following abbreviations are used:

FQ=full query sequence

RF=empirical runfile (s 4 0033.runfile)

QS=query sequences

QSQ=QS (fastq)

The target length for the fragment library was 181 bases. The simulation produced approximately 41–43

fragments per sequence, their lengths varying from 79 to 448 bases (mean 180.3). Fragments shorter than 130

bases were discarded. Sequencing was simulated with 5x coverage and using 125-base pair-ended reads. In the

end, we obtained approximately 74–76 reads per RA.

Alignment extension The reference alignments were extended with new sequences using PAGAN guided

and HMMER. The commands used were:

PAGAN guided (v. 0.33)

pagan --ref-seqfile RA --ref-treefile RTX --queryfile QSQ --outfile OA

HMMER (v. 3.0)

hmmbuild --dna RAH RAS

hmmalign --mapali RAS RAH QS > OAS

where the following abbreviations are used:

RA=reference alignment (fasta); RAS=RA (stockholm); RAH=RA (hmm)

RTX=reference phylogeny (nhx)

QSQ=query sequences (fastq); QS=QSQ reduced to fasta

OA=output alignment (fasta); OAS=OA (stockholm);

The true simulation tree was used as RTX in PAGAN analyses. Additional tools were used to convert

between different alignment formats. HMMER was also tested with option --enone but that did not improve

the results.
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Re-alignment The reference alignments were re-aligned with PAGAN and MAFFT. The commands used

were:

PAGAN (v. 0.33)

pagan --seqfile RS --treefile RT --outfile OA

MAFFT (v. 6.860b)

mafft --treein RTM RS > OA

where the following abbreviations are used:

RS=reference sequences;

RT=reference phylogeny

RTM=RT (mafft)

OA=output alignment (fasta)

For PAGAN, r = 0.01 and ε = 0.9 were used. The true simulation tree was used as RT in PAGAN alignments

and as the basis for RTM in MAFFT alignments. Additional tools were used to convert between different tree

formats.

Supplementary Table 1: The accuracy of extending re-aligned reference alignments.

PAGAN HMR/full HMR/clade

Simulation Ingroup Ingroup Ingroup

dpth query large small large small large small

PAGAN-generated reference alignments

close 0.976 0.976 0.932 0.927 0.943 0.966

0.30
interm. 0.965 0.963 0.934 0.924 0.943 0.941

distant 0.954 0.947 0.932 0.921 0.931 0.913

close 0.977 0.977 0.914 0.904 0.930 0.966

0.45
interm. 0.959 0.956 0.918 0.899 0.930 0.931

distant 0.944 0.917 0.919 0.897 0.914 0.877

close 0.976 0.974 0.880 0.855 0.905 0.956

0.60
interm. 0.945 0.933 0.886 0.847 0.906 0.895

distant 0.913 0.850 0.878 0.832 0.875 0.806

PAGAN HMR/full HMR/clade

Ingroup Ingroup Ingroup

large small large small large small

MAFFT-generated reference alignments

0.976 0.976 0.927 0.915 0.944 0.966

0.963 0.960 0.926 0.914 0.940 0.939

0.948 0.943 0.926 0.911 0.928 0.910

0.977 0.977 0.900 0.875 0.927 0.965

0.957 0.952 0.900 0.867 0.924 0.928

0.932 0.904 0.897 0.864 0.903 0.868

0.974 0.972 0.843 0.798 0.897 0.955

0.938 0.925 0.845 0.795 0.890 0.890

0.887 0.842 0.841 0.790 0.855 0.803
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[15] A. Löytynoja and N. Goldman. Phylogeny-aware gap placement prevents errors in sequence alignment and

evolutionary analysis. Science, 320:1632–1635, 2008.
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